
EZ Log

GSLOG TELEMETRY WRITER
Developer Guide

Copyright © 2008 Genesis Software Corp.

Genesis Software Corp. - GS Log Telemetry Tool Kit

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 1 of 21

Tap or click the desired content to jump to the page

Contents
Introduction .. 2

Installation .. 2

Overview ... 2

GSLog.LogFile “Text File Writer” ... 3

DBLog and SQLog “Database Writer” .. 4

GSLog.DBLog Data Structure ... 4

GSLog.MemoryLog .. 5

GSLog.MemoryDBComboLog .. 6

GSLog.CustomDBLog “Database Writer” .. 7

Reference – Class Details .. 11

IGSLog Interface .. 11

GSLog.LogFile .. 11

Properties .. 11

Methods .. 12

GSLog.DBLog ... 13

Properties .. 13

Methods .. 15

GSLog.MemoryLog .. 16

Properties .. 16

Methods .. 17

GSLog.MemoryDBComboLog .. 18

Properties .. 18

Methods .. 18

GSLog.CustomDBLog ... 20

Properties .. 20

Methods .. 20

Supporting Classes .. 20

GSLog.LogStatus .. 20

GSLog.LogCategory ... 20

Methods .. 20

Conclusion ... 21

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 2 of 21

Introduction
For most software developers, making a tool like this is so easy, we do it for ourselves often. Except for when we work
for someone else. Then we use what we are given or directed to use. Today, 2021, the architects I work for have us use
log4net which is an industry standard log writing tool I am very proficient with as well. The GSLog telemetry writer works
better for me and the methods I use for telemetry design and analysis with the sibling EZ Log Viewer tool. Having the
writing portion of the toolkit in a separate .NET class assembly enables me to easily plug in to any .NET application I am
working on and spend little time standing up the telemetry subsystem. I find GSLog to be far simpler to use and much
more effective.

The goals of the GSLog telemetry writer when I wrote it were

1. Installation and configuration be ultra-simple.
2. Flexibility to write to a text file, a database table, or memory region and switch between them with little code

changes.
3. Control how much telemetry is being written without having to rebuild and deploy, and be able to react to

changes in verbosity in real time.
4. Contain features useful to an application program for managing log files and reactive exception handling.

Installation
By default, the assembly file (GSLog.dll) is installed to the C:\Program Files\Genesis\EZ Log\Writer. However, you can re-
direct the installation to a folder of your choice. The installation does not install the assembly to the GAC.

After installation of the assembly, GSLog.dll, you can move or copy it to where ever you want to. Simply reference the
assembly file into your Dot Net project and you’re good to go. (In addition, you could use Visual Studio’s nuget utility to install

the assembly to your visual studio project. Look this assembly up in nuget using “EZ-Log.GSLog” as the search term.)

Overview
Whatever you implement. Text file, database, and/or memory region logging, the primary method you will use to write
telemetry in this assembly is the WriteLog method. This method is implemented in each of the GSLog types. Consider
the method signatures below.

WriteLog((Optional) DetailLevel, (Optional) Category, Message)

The “DetailLevel” parameter is what you use to set the minimal “LogLevel” at which the log entry will be written during
execution of the application. This parameter is one mechanism you can use to control how much telemetry is being
written by the application. (Similar to the info, debug, error, paradigm used by log4net only expandable)

How it works: your source code makes a log entry with a DetailLevel value of 3. If the supporting GSLog writer object’s
LogLevel property is set to 2 or less at the time the WriteLog statement is being processed, the log entry will NOT be
written because the LogLevel of the telemetry writer is less than the DetailLevel of the telemetry or WriteLog statement.
You can omit the DetailLevel as a parameter if you prefer.

The “Category” parameter is used to catalog the log entry. The parameter value is optional and you can omit the
parameter if you prefer.

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 3 of 21

The “Message” parameter is the information you want written to the log. While it is a required parameter, an empty
string is accepted. An empty string will add a blank line to the log file.

To use the assembly in your .NET projects, just make sure you have a reference to the GSLog.dll assembly.

Continue reading to see how to use each of GSLog’s Text File, Data Base, and Memory Region telemetry writers.

GSLog.LogFile “Text File Writer”
Setup is pretty simple. (See VB Sample Code below)

In addition to writing to a text file, the text file writer has features that help with managing the files that are written.

The sample below shows the setup for the application to write a text file for each day, and also limits the number of log
files in the folder where logs are written to 20 files.

There are properties that you can use to set the maximum file size if you prefer to have a single log file as seen below.

Learn them in the Reference Section starting on page 11 in this document.

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 4 of 21

DBLog and SQLog “Database Writer”
Notice how easy it is to setup and use the DBLog of SQLog class in the following VB Code snippet…

The sample above opens the log and writes entries for 2 separate processes.

What about table structure?

GSLog.DBLog Data Structure
The GSLog DBLog native table structure for consists of 2 tables. 1 to hold the telemetry data, 1 to hold control meta
data. It may sound complicated but it is really easy. Consider the details below.

The telemetry data table is called a PROCESS_LOG which is a table for one or more processes

The PROCESS_NAME column is used to support multiple applications
or individual processes within a single application, (like a web
application), sharing a single DB Table.

The Log Viewer tool in the GSLog Telemetry toolkit takes advantage
of this data structure in a way that makes monitoring and debugging
multiple applications easy and convenient. (www.gen-e-sys.com for
more info)

The control data table is called the DEBUG_PROCESS table.

The PROCESS_NAME column in this table points to the associated
column in the telemetry table. The DEBUG_LEVEL is used by the
application to know how much telemetry to send. A numeric value
is far easier to adapt to changes in telemetry strategy after the app
is online.

You can change the DEBUG_LEVEL in real time and your application
will react to it.

The Log Viewer tool in the GSLog Telemetry toolkit takes advantage
of this data structure by making it convenient to change the
DEBUG_LEVEL for an application or process.

How were the tables created? I could have created the tables manually. Often, I do. Possibly to change the length of a
column. However, the assembly can also create the supporting tables. Consider the code snippet below.

http://www.gen-e-sys.com/

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 5 of 21

You can use your own table naming if you like. See the Class Reference Section starting page 11 for the GSLog.DBLog
reference later in this document for more information. Self-generating tables work well for my applications that install
and create the tables on initial startup.

GSLog.MemoryLog
The memory log is used so you can write the telemetry for a process to a temporary location and output the telemetry
to permanent storage later.

Consider the following Visual Basic sample

The above example is indeed overly simple. The point to this is; if no exception occurred during the process, nothing

would get written to the log. When there IS an exception however, the log entry is written and it has all of the entries

leading up to the error because of the memory region. I found this telemetry style almost revelational.

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 6 of 21

GSLog.MemoryDBComboLog
This class puts together the DB Writer with the Memory Writer. To put it simply, the WriteLog method stores all the
entries in a memory region. The LogDump method is changed to save the memory contents to the database instead of
returning a string. The memory contents are saved to the PROCESS_DATA column (see the DBLog class reference at the
end of this document)

This class saves the effort of spinning up 2 separate telemetry writers to accomplish the same thing.

Same thing as before but instead of writing the memory log contents to a text file, (and manually at that), I place it in a
single DB record. Very efficient. When used in conjunction with the Log Viewer in the GSLog Telemetry toolkit
(www.gen-e-sys.com) you will be finding answers to issues quickly.

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 7 of 21

GSLog.CustomDBLog “Database Writer”
I added this type to make GSLog write to a log table that had specific table structure other than the structure native to
the GSLog toolkit. I had to write an application that worked alongside a “sibling” application that shared a log table. I
wanted to use GSLog so I added this class.

Truly the CustomDBLog class is one where I was “forcing” GSLog.DBLog to be something it is NOT. If you have
to use the CustomDBLog class, honestly, it would be faster for you to write a custom routine yourself without
GSLog. But if you’re like me and just have to use GSLog…

You should be fairly expert in using the DBLog class before reading further in the section. If you are not very
familiar with the DBLog class, it would be better to continue on to the next section of the document. The
Reference section starting at page 11.

Now for the internals of the CustomDBLog writer.

I chose to employ the .NET [VB ParamArray /C# params] mechanism to append custom data to the WriteLog method of
DBLog. I felt it would not be uncomfortable based on familiarity with the ParamArray/params mechanism when we use
“String.Format()”.

Consider the code that follows.

Notice WriteLog now has extra parameters?
Looks kind of familiar? yes?

Each parameter array entry is a name value pair in the form of a string.

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 8 of 21

The left side of the value pair is the DB Column Name. The right side is the value as you would write it in a SQL INSERT
statement.

Based on the source code above. The resulting table is shown below:

Unlike GSLog’s DBLog, the CustomDBLog type takes a bit of setup.

First, we have to communicate to the writer what the data structure of the table it is writing to is. Rather than do this

from a config file, (which can still be used…), I put the means to communicate some of the structure in the Constructor

where we instantiate the class.

With this in mind let’s look at the constructor for the CustomDBLog.
C#
public CustomDBLog(string connectionString, string TableName, string EntryDate_ColumnName, string
LogMessage_ColumnName, string Category_ColumnName = "", string ProcessName_ColumnName = "")

VB
Public Sub New(connectionString As String, TableName As String, EntryDate_ColumnName As String,
LogMessage_ColumnName As String, Optional Category_ColumnName As String="", Optional
ProcessName_ColumnName As String="")

So…, the connectionString and TableName parameters should be obvious.
The “Date” column is mapped using the (EntryDate_ColumnName) parameter, and the “Message” column is mapped
using the (LogMessage_ColumnName) parameter. Because the WriteLog method signature asks for a Category
parameter, we optionally map the Category Column using Category_ColumnName parameter of the constructor. The
ProcessName_ColumnName is similar but has a twist that I cover in a few more paragraphs.

Now let’s look at the DB Structure of a custom log table I am using for an example called “rp_authLib”

It is easy to see that there are more fields than what we are
specifying in the constructor.

The following explanation should help to see the mechanics of
setting up the Custom DB Log writer.

Using the example at the beginning of this document:

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 9 of 21

Dim oLog As New CustomDBLog(conn_str, "rp_authlib", "EntryDate", "Details", "Subject")

Or
GSLog.CustomDBLog oLog = new GSLog.CustomDBLog(conn_str, "rp_authlib", "EntryDate", "Details", "Subject");

To paraphrase; the constructor asks for the first 4 parameters that will meet our “must have” requirements for custom
logging. But what about those columns in the table we did NOT map? See the WriteLog Method below to see how we
will populate those columns.

WriteLog Method

Here is the signature for the CustomDBLog WriteLog method.
VB
Sub WriteLog(DetailLevel As Integer, Category As String, Message As String, ParamArray CustomData As String())
C#
void WriteLog(int DetailLevel, string Category, string Message, params string[] CustomData)

For the CustomDBLog writer, the WriteLog signature is the same as all the other logging classes in this assembly with an
additional parameter at the end. That parameter gives us the means to populate the columns not mapped in the
constructor.

Let’s look at an implementation from the example provided earlier.

oLog.WriteLog((Standard parameters)1, "CustomLogTest2", "************ Start Logging ********",
(Parameter Array) "EntryID=NewID()", $"Machine='{Environment.MachineName}'", $"Location='{CustomString}'", "UserID='RobP'")

DetailLevel is nothing new in the EZ-Log writer paradigm. The second argument is the Category that we mapped to the
“Subject” column in the constructor. The “Message” parameter was mapped to the “Details” column in the constructor.
Everything past the “standard” parameters are name/value pairs having the Name matching the DB Column Name and
the value being written.

This minor expansion of the WriteLog signature, provides a means to write to custom data tables easily and in a manner
consistent with the interface.

You may ask yourself what happens if I choose not to map the “category” to a column in the table. You still will have to
put text in the WriteLog method. Whatever text you put in the parameter is ignored if you do not map the Category
Column in the constructor. Simple. I leave it to you. You’re going to put text in the parameter anyway, might as well map
it. Still, you could have a very valid reason not to do that as well.

We need to move on to talk about mapping the “PROCESS_NAME” to “ProcessName_ColumnName”. The Open
method explained next is the key.

Open Method

Here is the call from the example.
oLog.Open("CUSTOM_LOG2", 3)

This is exactly the same as DBLog and it acts the very same way as the DBLog.Open method. What is different is in
DBLog, the ProcessName parameter is written to our “standard” Log Table because the column is there. However, for
the CustomDBLog it is just a bit different. A column to hold that data may not be available.

If the constructor’s “ProcessName_ColumnName” parameter was populated, thus mapping a column in the log table,
then the process name used in the Open method will be written to the mapped column of the Log Entry. Otherwise it

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 10 of 21

will be used to look up the PROCESS_NAME in the table referred to in the TableNameProcessName property and get the
current LogLevel for the PROCESS_NAME

This means custom logging can take advantage of the dynamic LogLevel changes set up in the EZ-Log Writer controller.
However, unlike the DB Log and MemoryDBCombo Log, if you don’t care to take advantage of Dynamic Logging via the
TableNameProcessName property you can choose not to use the “Open” method at all.

Altering our example:
Dim conn_str As String = "<your connection string here>"
'See the details for more information on the the constructor
Dim oLog As New CustomDBLog(conn_str, "rp_authlib", "EntryDate", "Details", "Subject")
'oLog.Open("CUSTOM_LOG2", 3)
oLog.LogLevel = 3 'No Dynamic Log Level

A Note you should consider: If do not use the open method and forget to set the LogLevel manually, the default value
for LogLevel is 0 (zero) effectively turning off any logging.

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 11 of 21

Reference – Class Details
In this section I try to share insight on specifically what a method does or how a property value effects the process.

IGSLog Interface
There is one interface to this telemetry writer. It provides the mechanism to easily switch between writing to a Database
or Text File or Memory Region or any of the Classes supplied by this assembly. The interface also allows you to extend
the workings to extend this logging system to integrate with an existing logging system.

GSLog.LogFile

Properties
Name Data Type Description

DataFile String The full path to the text file the writer should write to

LogLevel Integer Controls the verbosity of how much information is written to the log. The higher the
LogLevel the more detail is written to the log.

CategoryPrefix String The WriteLog method described below has a Category parameter that the
programmer uses to group Log Entries. The category prefix is used to prepend
information to the category when a log entry is written to help isolate a single
user’s log entries for multiuser applications sharing a Log File or Database table.
Useful? Rarely, but nice when you need it.

AutoEscalate Boolean Default=True See below for details. When the value for this property is False. Auto
Escalate feature is off

AutoEscalateLevel Integer Default=3 When the detail level of the WriteLog method is zero (0) the “error”
indicator, the Log Writer’s “LogLevel” property will be escalated to the value set by
this property.

It has been my experience that most users, when they experience an error, and the error is
not a program crash, they will usually attempt the function or process a second time. If
during program execution the “LogLevel” is not set to capture information that could lead to
solving or discovering what the problem was, the AutoEscalateLevel property will offer the
chance discovering valuable data the second time the user attempts the process.

FileAccessRetryCount Integer Default Value=100. For multi user applications that have a central text file for a log,
contention for write access to the file could exist if two or more instances of an
application were writing to the log simultaneously. The Log Writer instance will re-
try to write the entry as many times as the value of this property dictates before
throwing a file contention exception. Note: Experience in testing shows that a
value of 100 works well. However for apps with many simultaneous users a larger
value may be needed.

LogType GSLog.eLogType Read Only property. Returns: GSLog.eLogType.TextFile.

MaxFileSize Integer DefaultValue=5,000,000 (5MB) If the current size for the DataFile exceeds the
MaxFileSize value, the DataFile is backed up as <Log File Name>_Last and a new
log is started. If a backup file exists already for the log, the backup file is deleted.

CheckMaxFiles Boolean Default=True. See the next property for details.

MaxFilesInLogFolder Default=10. Minimum setting for this property is 2 Often log files are written on a
daily basis to keep log files small and to easily lookup a specific day.

Often, after a software application is stable, I forget to “clean up” the log folder.
This property in conjunction with the CheckMaxFiles property helps to limit the
number of daily log files kept in a folder.

When the number of log files in a folder exceeds the limit set by this property, the
oldest logs are deleted. And the newer log files are kept.

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 12 of 21

Methods
Name Return Data Type Description

WriteLog None Writes a single line to the log.
Parameters

DetailLevel: Works in conjunction with the instance LogLevel property. If
the DetailLevel parameter value in the method call is equal to or less than
the class instance’s value of the LogLevel at the time the method is
called, an entry is added to the log.

Category: The category the log entry should be grouped under. This
parameter allows the programmer to set multiple groupings for the log
analysis.

Message: The information the programmer wants to appear in the log.

Status Log Status Structure I added this method so I could have an app ask the log for its status

DateFormat String I use the .NET string defs. Default=”yyyyMMdd HHmmss.fffff”

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 13 of 21

GSLog.DBLog
This telemetry writer basically issues a SQL Insert statement inserting a row into a table. I use Microsoft’s OleDB Data
component because OleDB has a data provider available for many popular database engines and the SQL being
generated by this class is rudimentary.

Some people are partial to using native database providers. However, even if I used a data driver native to the target
database, this assembly really has no need to take advantage of whatever benefit there is to get from a native data
driver/provider. Be that as it may, I respect that there may be times where a native driver is a “requirement” from our
customer.

For those requiring use of SQL Server native .NET data providers, an additional DB Writer is implemented using the
native SQL Client data provider. The Type name that uses the SQLClient provider is GSLog.SQLog. The details and
methods of SQLog are the same as the DBLog class.

The GSLog native table structure consists of 2 tables. 1 to hold the telemetry data, 1 to hold control meta data. Consider
the details below.

The telemetry data table is the PROCESS_LOG

The Log Viewer tool in the GSLog Telemetry toolkit takes advantage
of this data structure in a way that makes monitoring and debugging
multiple applications easy and convenient. (www.gen-e-sys.com for
more info)

The control data table is the DEBUG_PROCESS

As you can see, the PROCESS_NAME column is related to the
PROCESS_LOG table. The DEBUG_LEVEL is used by the application to
know how much telemetry to send.

You change the DEBUG_LEVEL in this table and your application will
react to it in real time if needed.

The Log Viewer tool in the GSLog Telemetry toolkit found at
www.gen-e-sys.com takes advantage of this data structure by
making it convenient to change the DEBUG_LEVEL for an application
or process.

Consider the properties and methods of this class below

Properties
Name Data Type Description

conn_str String The .NET connection string.

Connection OleDB Connection or
SQLClient Connection

Please see above.

http://www.gen-e-sys.com/

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 14 of 21

CategoryPrefix String The WriteLog method described below has a Category parameter that the
programmer uses to group Log Entries. The category prefix is used to
prepend information to the category when a log entry is written to help
isolate a single user’s log entries for multiuser applications sharing a Log
File or Database table.
Useful? Rarely, but nice when you need it

AutoEscalate Boolean Default=True See below for details. When the value for this property is
False. The auto escalate feature is turned off.

AutoEscalateLevel Integer Default=3 When the detail level of the WriteLog method is zero (0) the Log
Writer’s “LogLevel” property will be escalated to the value set by this
property.

It has been my experience that most users, when they experience an error, and the
error is not a program crash, they will usually attempt the function or process a
second time. If during program execution the “LogLevel” is not set to capture
information that could lead to solving or discovering what the problem was, the
AutoEscalateLevel property will offer the chance discovering valuable data the second
time the user attempts the process.

DBType eDBType Enum Default=SQLServer This is the type of DB being used to store the telemetry.
Certain popular DB Engines have a specific syntax when inserting and
formatting date values. Setting this properly adjusts the syntax of the SQL
written by the WriteLog method to suit the DBType.
public enum eDBType
{
 MSAccess,
 SQLServer, For Oracle DB’s use the SQLServer entry
 DB2
}

TableNameProcessLog String By default this property’s value is “PROCESS_LOG” See the Table Structure
Section above for details

When the WriteLog method generates the SQL INSERT statement, it
references this property for the Table Name portion of the SQL Statement

TableNameProcessName String By default the Table Name is “DEBUG_PROCESS”. This is the name of the
“control” table used to read the LogLevel property

LogLevel Integer Default=0 This property value is automatically set by the “Open” method but
can still be changed by the application.

LogLevelSensitivity eLogLevelSensitivity Default=Low. The LogLevel property value is examined by the WriteLog
method to see if the entry should not be written to the log.
When value of this property is set to “High”, the WriteLog method will fetch
the LogLevel value from the DB before checking the LogLevel value to see if
the Entry should NOT be written.

For the SQL Version we take advantage of extended syntax and query the
table with the nolock SQL clause.

LogType eLogType Read Only property. Returns: GSLog.eLogType.Database.

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 15 of 21

Methods
Name Return Data Type Description

WriteLog Writes a single line to the log.
Parameters

DetailLevel: Works in conjunction with the LogLevel property. If the
DetailLevel is equal to or less than the value of the LogLevel at the time
the method is called an entry is added to the log.

Category: The category the log entry should be grouped under. This
parameter allows the programmer to set multiple groupings for the log
analysis.

Message: The information the programmer wants to appear in the log.

There are overrides making the detail level and category optional.

Open Opens a Process Log.
Parameters:

ProcessName: String with the Name of the Processs Log to open

DefaultLogLevel: Optional integer default value=9.

As a part of the initialization or instantiation of this class the Programmer must
“Open” a Process Log. During the Open process the “TableNameProcessName”
property table is opened looking for a row with a PROCESS_NAME matching the
given parameter. If a matching row is found the DEBUG_LEVEL field of the
matching row is read and stored in the LogLevel Property to be used for
subsequent WriteLog calls.

If a Matching PROCESS_NAME is NOT found, a new row is inserted to the table
with the new Row’s DEBUG_LEVEL set to the “DefaultLogLevel” parameter value.

Close By default, Connections are closed when the instance “Self Connects” and the
instance is Disposed of by the GC or manually. This process is automatically called
during the handling of a Dispose event or call.

You usually don’t HAVE to use this method.

If it makes you feel better and you want to manually close and dispose the
“Connection” property, this is the method to use.

MakeTables This Method will create the 2 supporting tables of the logging system. Uses the
“TableName----“ properties for the table names.

Intended for applications that self-generate supporting table structure.

Status Log Status Structure I added this method so I could have an app ask the log for its status.

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 16 of 21

GSLog.MemoryLog
Holds all log entries in an internal List< string> object that is output via a class method with other decorations.

The details of the class are.

Properties

Name Data Type Description

CategoryPrefix String The WriteLog method described below has a Category parameter that the
programmer uses to group Log Entries. The category prefix is used to
prepend information to the category when a log entry is written to help
isolate a single user’s log entries for multiuser applications sharing a Log
File or Database table.
Useful? Rarely, but nice when you need it

AutoEscalate Boolean Default=True See below for details. When the value for this property is
False. The LogLevel Property is not automatically escalated when WriteLog
is called with a zero Log Level parameter.

AutoEscalateLevel Integer Default=3 When the detail level of the WriteLog method is zero (0) the Log
Writer’s “LogLevel” property will be escalated to the value set by this
property.

It has been my experience that most users, when they experience an error, and the
error is not a program crash, they will usually attempt the function or process a
second time. If during program execution the “LogLevel” is not set to capture
information that could lead to solving or discovering what the problem was, the
AutoEscalateLevel property will offer the chance discovering valuable data the second
time the user attempts the process.

InjectTimeStamp Boolean Default=True. When true the WriteLog method writes a time stamp to each
entry in the internal list.

TimeStampFormatString String Default=”:yyyyMMdd HHmm:ss.ffffff”
This should say it clearly

Sometimes I am only interested in the seconds of the timestamp. This
property allows me to control exactly what is injected by the writer.

The date time string formatting follows the Microsoft guidelines provided
under the “Format String Component” documentation of the String.Format
method.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/composite-
formatting

LogLevel Integer Controls the verbosity of how much information is written to the log. The
higher the LogLevel the more detail is written to the log.

LogType GSLog.eLogType Read Only property. Returns: GSLog.eLogType.MemoryLog

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 17 of 21

Methods
Name Return Data Type Description

WriteLog None Writes a single line to the log.
Parameters

DetailLevel: Works in conjunction with the instance LogLevel property. If
the DetailLevel parameter value in the method call is equal to or less than
the class instance’s value of the LogLevel at the time the method is
called, an entry is added to the log.

Category: The category the log entry should be grouped under. This
parameter allows the programmer to set multiple groupings for the log
analysis.

Message: The information the programmer wants to appear in the log.

LogDump String Returns all the WriteLog entries made prior to calling this method as a serial string
(including whitespace).

Parameters:
LogTitle (optional) string: Prepends a “decorated” string to the beginning
or end of the log text. Used to demarcate the logdump when embedded
with other text. (Like an exception message).

EmptyTheLogWhenDone (optional) Boolean Default=False
When set to true after the return string is prepared for return the internal
string builder is emptied.

Clear Empties the internal string list

Status Log Status Structure I added this method so I could have an app ask the log for its status

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 18 of 21

GSLog.MemoryDBComboLog
After I added the MemoryLog log type, I added this hybrid type that pretty much puts together the Memory and DB Log

types. Prior to writing this style of logging I would use the memory log to store the play by play of a process and when an

exception occurred, I would write the memory log into the message text (with the exception information of course) and

save that as a single record in the database table using the DB Log Style. This class simply rolls all of that process into a

single method call.

Properties

This methodology has a usefulness is not readily evident. Consider the following: I am one of let's say 50 (just to be

modest) programmers each of us are working on a large corporation’s applications. Having Web Applications and

Network Server Farms in a single corporate environment ALL writing telemetry to a SINGLE location, it is very likely that;

2 or more instances of the same application, running on 2 separate servers, are writing to a single storage location at the

exact same time.

This poses a challenge in that you have to filter out let's say 50 or 60 lines (usually much less) out of possibly tens of

millions of lines of telemetry data rows. Then, after you have filtered things by application and environment you have to

make sure the rows of data truly belong together before you even begin to locate and repair an issue with the software.

Using my strategy with the memory DB Log, when I find the entry locating the application and the time that the bug or

anomaly occurred, all of the relevant information is already packaged together in a single row. Ready for analysis using

the EZ-Log Viewer.

Name Retrun Data Type Description

conn_str String Same as the DBLog

Connection OleDBConnection Same as the DBLog

CategoryPrefix String Same as the DBLog

AutoEscalate Boolean Same as the DBLog

AutoEscalateLevel Integer Same as the DBLog

DBType eDBType Enum Same as the DBLog

TableNameProcessLog String Same as the DBLog

TableNameProcessName String Same as the DBLog

InjectTimeStamp Boolean Same as MemoryLog

TimeStampFormatString String Same as MemoryLog

PersistConnection Boolean Same as the DBLog

LogLevel Integer Same as the DBLog

LogLevelSensitivity eLogLevelSensitivity Same as the DBLog

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 19 of 21

Methods
Name Return Data Type Description

WriteLog None Writes a single line to the memory log.
Parameters

DetailLevel: Works in conjunction with the instance LogLevel property. If
the DetailLevel parameter value in the method call is equal to or less than
the class instance’s value of the LogLevel at the time the method is
called, an entry is added to the log.

Category: The category the log entry should be grouped under. This
parameter allows the programmer to set multiple groupings for the log
analysis.

Message: The information the programmer wants to appear in the log.

LogDump String Takes all the WriteLog entries made prior to calling this method packages them
into an internal string. Then Calls the SaveDBEntry method to store the write log
entries in the Log Table. If an error occurs, returns the exception message.
Otherwise returns an Empty String.

Parameters:
LogTitle (optional) string: Prepends a “decorated” string to the beginning
or end of the log text. Used to demarcate the logdump when embedded
with other text. (Like an exception message).

EmptyTheLogWhenDone (optional) Boolean Default=False
When set to true after the return string is prepared for return the internal
list is emptied.

SaveDBEntry This does the same thing the WriteLog method does in the DBLog class.

Clear Empties the internal list

Status Log Status Structure I added this method so I could have an app ask the log for its status

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 20 of 21

GSLog.CustomDBLog

Properties

Methods
Name Return Data Type Description

(Constructor) (See explanation at the beginning of this document.)

WriteLog (See explanation at the beginning of this document.)

Open (See explanation at the beginning of this document.)

Status Log Status Structure I added this method so I could have an app ask the log for its status.

Supporting Classes

GSLog.LogStatus
A structure that is returned by the Status Method.

public struct LogStatus
 {
 public int NumberOfEntriesWritten;
 public int CurrentLogLevel;
 public string CurrentProcessName;
 public string OutputFilePath;
 public int MaxLogFileSize;
 public int MaxLogFilesAllowed;
 public string ConnectionString;
 }

GSLog.LogCategory
This is basically a customized Stack. Makes it easy to set a category that includes a hierarchy.

Methods
Name Data Type Description

Current String Returns the current stack as a string appending each stack entry (Category Title)
from top to bottom

SetCategory Takes the “Category Title” as the input parameter and adds it to the top of the
stack.

Restore “Pops” the top entry (Category Title) off of the stack.

Name Data Type Description

conn_str String Please DBLog reference for details.

Connection OleDBConnection Please DBLog reference for details.

CategoryPrefix String Please DBLog reference for details.

AutoEscalate Boolean Please DBLog reference for details.

AutoEscalateLevel Integer Please DBLog reference for details.

DBType eDBType Enum Please DBLog reference for details.

TableNameProcessLog String Please DBLog reference for details.

TableNameProcessName String Please DBLog reference for details.

LogLevel Integer Please DBLog reference for details.

LogLevelSensitivity eLogLevelSensitivity Please DBLog reference for details.

GSLog Developer Guide

Copyright © 2008 Genesis Software Corp. Page 21 of 21

Conclusion
This tool does it all for me when it comes to writing telemetry for Windows programs. It has evolved into a fine tool. I
encourage you to spend the time to learn this tool’s capabilities. If you do follow that advice, I hope you will discover
and hold the same value for GSLog that I do. If you need further explanation or clarification, please reach out to me.

Rob Plates: Genesis Software Corp.
http://www.gen-e-sys.com

