
GSMsgBox: Custom Message Box

If you use .NET to write Windows® apps, you well know that the .NET WinForms MessageBox is a
handy way to show messages to the user easily.

Still, .NET’s MessageBox, as handy as it is, was missing a few things I would like to have. As a result
I put together something that is similar to .NET’s MessageBox but addressing my specific needs.

I wanted to:

• tell the message box where to appear on the screen or to simply center itself to a WinForm.

• be able to colorize and format my message and possibly display an image.

• be able to use my own icon instead of what is available in the standard .NET MessageBox.

• be able to code using my message box like I did with the standard .NET Message Box.

I wrapped together standard WinForms controls around a web browser control and packaged it so I
can re-use it in a .NET Assembly. After using it a few years I got to tweaking it so it is just right.

(For me at least.)

I believe you will benefit by using this Message Box system. Something like this IS easy to make for
any developer but it often takes time to refine so as to be the most useful. So I offer it as a free
download so you can simply save yourself the time of making and stabilizing your own Message Box
assembly application.

What is in the GSMsgBox assembly
There are 2 classes exposed.

TimedMessage class.
The TimedMessage Class is used like a message box. This class has a timer that closes the
message automatically. I use the TimedMessage class occasionally when the applicaton needs to tell
the user something and does not need the user to respond.

The MsgBox class
This is the class that can be used in place of the standard WinForms MessageBox.

How to use the classes
The ShowMsg or Show methods are the two I have most often used.

Consider the VB code snapshow below where I first use .NET’s MessageBox and then GSMsgBox

Looks almost identical. Yet the last parameter in the example above makes all the difference.

GSMsgBox will appear centered in the form (Me/this) the button is contained in.

Here is the official signature of the ShowMsg method as seen from Visual Studio’s Intellisense pop
up.

The additional parameters are used to let you control the size and placement of the message box.

Inside the GSMsgBox assembly I created a WinForm form with a panel of buttons, an image control
to show the icon, and a WebBrowser control for the message of the text box. Then, I expose a
MsgBox class that does all the work of manipulating the controls to emulate .NET’s MessageBox in a
method named Show. It is that simple. Below is a screenshot of the design mode of my MessageBox
form.

MsgBox WinForm Controls

Having my own form to control, I am capable of setting the sizing and placing the Message Box form
on the screen. Because the Message Box “message” is displayed in a web browser control, I planned
to use HTML to provide formatting and coloring of the message. (I could also show an image as well)

I suggest you use the object browser to explore all the properties, methods, and enumerations. This
is not a large assembly and quite simple in intent. I share more insight about the classes at the end of
this document.

An additional tool
After using GSMsgBox consistently over a few projects, I decided to make a utility WinForm
application called “GSMsgBox Setup” to allow me to better design my application’s pop up Message
Boxes.

As an output, the GSMsgBox Setup application would generate the program code I would need in the
application I was working in at the time.

The GSMsgBox Setup application turned out to be a real benefit because I could do all of the
Message Box design and visualization outside of the application and plug it in when I’m done.
Because of this tool I did not have to step through my code using the debugger AND make sure the
business logic associated to trigger the MsgBox inside of my application was set up, just so I could
test the design of the MsgBox message and sizing.

The GSMsgBox Setup utility is installed when you install the GSMsgBox Assembly using the installer from my web site. (http://www.gen-e-sys.com)

The following pages outline the steps of a single editing session using the GSMsgBox Setup tool.

You will do his many times. (and enjoy it).

Creating a program statement using the GSMsgBox Setup Utility App

Start the MsgBoxSetup.exe utility application and the Main window shows (below).

Enter a Title, and Message, then select an Icon and Button Configuration.

Then click the View button to visualize your message box.

Then size the Message Box with your mouse by dragging on the edges of the message box window.

(results shown below)….

After closing the re-sized message box, the source code and property text boxes are populated with
the values of the window sizes as seen below.

More Importantly: Notice the source code text area on the bottom of the window.
This is the output of the GSMsgBox Setup.The source code statement in VB and C# needed to show
the user message box you just designed.

I just copy the line I want into the computer clipboard, then paste it into the application code I am
working on. This tool makes creating polished user messages for Win32 .NET applications simple,
convenient, and fun.

Assembly History/Author’s Notes

Using the 1st version of this assembly, I had to set the individual Height and Width properties and then
show the MsgBox in separate statements. (Sample below)

oMsgBox = New GSMsgBox.MsgBox
oMsgBox.Height = 100
oMsgBox.Width = 200
oMsgBox.Show("Size Smaller than Minimum", "Sorry", MessageBoxButtons.YesNoCancel, GSMsgBox.GSNMsgBoxIcons.Halt, Me)

The optional Form reference at the end of the Show method signature, (shown above as Me or this in

C#), was key to GSMsgBox showing itself within the bounds of the Form presenting it.
It worked great !!!!! I was pleased but…

As you can imagine, I got tired of multiple statements quickly.

In the next version (2.x), I appended optional Height, Width, Top, and Left values to the Show method
signature. The result was very close to the way we use the “normal” .NET MessageBox, AND…
provided me the control to size and place the location of the message box as well as colorize and
format the text. In this version I thought I reached my goals I had when I started this effort.

Code Example of typical statement in VB after version 2.x.
MsgBox.Show("Size Smaller than Minimum", "Sorry", MessageBoxButtons.YesNoCancel, GSMsgBox.GSNMsgBoxIcons.Halt, Me, 100, 200)
or using names to explain the added optional parameters.
MsgBox.Show("Message", "Caption", “button config”, “selected icon”, Optional [FormRef, height, width, top, left])

Using the MsgBox or TimedMessage in one statement worked well and was in play for a number of
years.

The current version of this assembly (3.x), added Shared/Static ShowMsg methods so you can use
the assembly resources without spinning up an instance. (Looking back, I say I should have done that
from the start.)

Not much more to say other than I love this cute little assembly. It works. Beautifully.

